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Abstract

Image semantic segmentation is of immense interest for
self-driving car research. Accurate and efficient segmen-
tation mechanisms are required. We have evaluated In-
tersection over Union (IoU) metric over Cityscapes and
KITTI datasets. We designed baseline softmax regression
and maximum likelihood estimation, which performs quite
poorly for the image segmentation task. We ran fully convo-
lutional networks (FCN), which performed almost perfectly
over the KITTI dataset. We found overfitting problem for the
more complex Cityscape dataset. We conducted several ex-
periments with regularization, dropout, data augmentation,
image scaling and newer architectures. We are able to suc-
cessfully mitigate overfitting by data augmentation. We also
generated a confusion matrix and conducted error ablative
analysis to get a deeper understanding of FCNs.

1. Introduction

Self driving car technology has a potential to revolution-
ize how we travel. It would not only make driving safer and
more efficient, but also free passengers to utilize the driving
time in various other productive activities. Traditional self-
driving car design has dependence on mapping and local-
ization. This approach requires expensive sensors such as
LIDARSs and high-precision GPS. An alternative approach
is to conduct semantic segmentation on the camera data.
Semantic segmentation, which means labeling images with
pixel by pixel classification, will be able to perceive the sur-
rounding environment. This includes both free roadspaces
(roadways, pedestrian walkway etc.) and dynamic objects
(vehicles, pedestrians, bikers etc.) [3, 4]. This approach is
perhaps also closer to how humans perceive the driving en-
vironment. As opposed to LIDAR and High-Definition map
based systems, vision based autonomous driving systems
are much more affordable [4]. Further, semantic segmen-
tation could also be incredibly useful for robot navigation
because it is not always feasible to produce real time maps
of indoor spaces (e.g., tables and chairs can be moved eas-

ily) [9]
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2. Related Work

Semantic segmentation is a widely studied topic in Com-
puter vision. The state-of-the art algorithms rely on deep
learning based frameworks. In [!], FCNs are proposed as
a first deep learning architecture for semantic segmenta-
tion. This architecture modified VGG-16 based Convolu-
tional Neural Networks for segmentation task. Improve-
ments were reported by using RESNET-50 based architec-
tures [15]. The state-of-art results by Google uses a com-
bination of RESNET-based architecture and dilated convo-
lutions and is currently the best model on cityscape leader-
board for category IoU metric [18]. Researchers at Audi
have modified Squeezenet to work for semantic segmenta-
tion [17], which improves inference time at the cost of ac-
curacy.

3. Datasets
3.1. KITTI

Our first dataset is KITTI [5], which contains 289 images
of 160x576 pixels with two classes: road and non-road. We
divided the dataset into a training set of 231 images and a
validation set of 58 images. In Figs. 1 and 2, we show a
raw and labeled image in KITTI training set. In Fig. 3, we
have plotted the frequency with which two classes (road and
non-road) appear in the images.

3.2. Cityscapes

Our second and main dataset is Cityscapes[6], which has
5000 large images of 2048x1024 pixels with 30 classes in
8 categories. Examples of classes are car, truck, bus, which
belong to the vehicle category; and road, sidewalk, parking,
which belong to the flat category. The dataset is divided into
2975 training images, 500 validation images and 1525 test
set images. We show the number of pixels present per cate-
gory in Fig. 6, with flat, construction, and nature occupying
the most number of pixels across all images.

4. Methodology
4.1. Metrics

We use intersection over union (IoU), averaged over each
class as our primary metric. IoU is more robust than per



Figure 1: KITTI Image

Figure 4: Cityscapes Image

pixel accuracy when there is a large class imbalance. For
example, always predicting Not Road on KITTI would yield
an accuracy of 85% but an IoU of only 42.5%.
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4.2. Baseline Algorithms

IoU

4.2.1 Softmax Regression

In this first baseline model, we predict the class of a pixel
based on its color and the color of its neighbors within a
window size of WxW . We train a softmax classifier to pre-
dict the class of the pixel at the center of the window based
on the red, green, and blue components of each pixel within
the window.

4.2.2 Maximum Likelihood Estimation

For this second baseline model, we assume that each class
is associated with one or more color ranges. Therefore, we
divide our color space into B buckets and estimate the class
distribution of each. We define b(z) as the bucket corre-
sponding to the color of the pixel x. We then define our
predictor as follows:

h(z) = argznaxp(ylb(z)) = argznaxp(y, b(z))

where the joint distribution p(y, b(x)) is estimated by count-
ing occurrences in the training set. The number of probabil-

Figure 2: Annotated Image

Figure 5: Annotated Image

Frequency of Kitti Classes

Figure 3: Class Distribution

Number of Pixels per Category in Dataset
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Figure 6: Pixel Distribution

(a) KITTI Output with road in
white, not road in purple

Figure 7: Maximum Likelihood Estimate

ities that we must estimate in this model for B bins and K
classes is O(BK)

4.2.3 Discussion

Table 1 shows that our MLE algorithm significantly outper-
forms both the naive majority algorithm and softmax regres-
sion. The output of our MLE model (Fig. 7) classifies most
pixels correctly with very tight boarders on each region, but
regions are peppered with misclassifications. Furthermore,
the model struggles with shadows and transparent objects,
such as car windows. This indicates that color alone is in-
sufficient to classify pixels. In an attempt to remedy these
shortcomings, we will train a fully convolutional network
(FCN) on KITTT and Cityscapes.

4.3. Fully Convolutional Network

We chose FCN-VGG16 [ 1] as it was a breakthrough deep
learning architecture for end-to-end segmentation and is of-

(b) Cityscapes Output has reasonable
performance on trees, cars, and ground



Table 1: Baseline Algorithms Validation IoU

KITTI Cityscape
Always Predict Majority Class  42.5% 5.1%
Softmax Regression(W = 1) 12.8% 13.1%
Softmax Regression(W = 3) 16.7% 15.4%
MLE (B = 221) 68.7% 31.6%
MLE (B = 218) 68.5%  31.8%
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Figure 8: FCN Architecture

ten cited as a baseline for modern semantic segmentation

algorithms such as PSPNet[ |4]and ResNet-34[15].
In Fig. 8, the architecture for a FCN is shown composed

of 5 convolutional layers (each convolutional layer is fol-
lowed by a pooling layer), upsampling (2x, 2x, 8x to pre-
serve spatial dimension) and skip connections from layer 3
and 4 to retain fine-grain information from previous layers.

5. Experiments and Results

Our investigation starts by taking an existing implemen-
tation of FCN from Udacity [16]. We modified FCN-
VGG16 architecture for various network configurations.
Since IoU is not differentiable, we optimize categorical
cross entropy loss as a proxy for IoU. We implemented
early stopping by computing the validation loss after every
training epoch and halting training if the validation error in-
creases more than two times in a row. We implemented loU
metrics to evaluate the performance. We wrote our code
using Tensorflow and ran simulations on Amazon AWS.

5.1. KITTI
5.1.1 Hyperparameter Tuning

We first conducted experiments to find the best values for
various hyperparameters. We used validation loss as the
criterion to select hyperparameters. We experimented with
various design choices for learning rate, batch size, opti-
mization algorithms; as shown in Figs 9, 10, and 11 re-
spectively. We also ran experiments for keep probability
for dropout used in VGG-16. We did hyperparamter tun-
ing experiments with a image size of 160X576 pixels. We
found that learning rate of .0001, batch size of 4, Adam op-
timization and keep probability of 0.6 to work best for our
architecture.

5.1.2 KITTI: Initial Results

In Fig. 12, we plot the training set loss and validation
set loss obtained by choosing best parameters from the

experiments described above with input image size set of
320x1152. We have plotted validation loss versus training
set size in Fig. 13. We can make two key observations from
these plots: 1) Our network does not have variance problem
as there is not a huge gap between training set loss and vali-
dation set loss. 2) The validation loss is still decreasing with
training set size. This implies we could further decrease loss
by having more data. We obtain 95.5% mean IoU score on
the validation set (Fig. 14). We have plotted one output im-
age from test set in Fig. 15. The pixels classified to be in
road category are marked with green color.

5.2. Cityscapes - Initial Results

Cityscapes is an 8-class classification task (classes here
refer to Cityscapes’ 8 categories, not the 30 object classes).
We used the same tuned hyperparameters from Section
5.1.1. Due to limited computing resources, we set the image
to be 1/64 of original 2048x1024 pixels (resized to 1/8th
on both height and width dimensions). Figs. 16, and 17,
show that on Cityscapes FCN8 achieved an initial Val IoU
of 59%, and a Train IoU of 68% with early stopping. There
is a clear overfitting as the validation loss begins increasing
while training loss continues to decrease. We tried regular-
ization and additional dropout as first experiments. How-
ever, it achieved only marginal improvements in reducing
overfitting.

5.3. Ablative Analysis

Network Loss IoU Loss TIoU
KITTI | KITTI | Cityscape | Cityscape
FCN-8 .066 954 423 595
Remove L3-skip | .073 944 455 570
FCN-16 077 941 438 .569
Remove L4-skip | .090 932 542 .509
FCN-32 .097 926 531 489
L4-out .085 935 428 572
L3-out .088 935 433 573

Table 2: Ablative Error Analysis

We conducted ablative analysis to get a better under-
standing of our model. We removed layers from our net-
work in this order: skip connection from layer 3, 3rd up-
sampling stage (i.e., now we upsample by 2x, followed by
16X - this is also called as FCN-16 in Long et. al [1]), skip
connection from layer 4, 2nd upsampling stage (i.e., now
we upsample directly by 32x - this is also called as FCN-32
in Long et. al [1]), conv5 layer (i.e. upsample layer 4 output
by 16x), and conv4 layer (i.e. upsample layer 3 output by
8x). We show validation loss and mean IoU results for var-
ious configurations for both KITTI and Cityscapes datasets
in Table 2. We observe from the results that layer 4 skip
connection is most important.
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Figure 12: Loss vs Epoch

Figure 15: Output labeled Image

5.4. Cityscapes - Confusion Matrix

We are interested in which categories perform better and
which perform worse. Figure 19 shows a confusion ma-
trix with rows corresponding to the actual value of a pixel,
and the columns being the predicted value. The human and
object categories do far worse than others and significantly
impact our mean IoU. We suspect this is due to two factors:
1) Figure 6 shows that human and object are the rarest ex-
amples in our training set and 2) humans and most objects,
such as poles, tend to be very skinny. This means our IoU
on these categories is very sensitive to noisy borders.

5.5. Cityscapes - Experiments

5.5.1 Data Augmentation

During training, we add random Gaussian noise to each im-
age with zero mean and standard deviation of 5. To ac-
count for the different lighting conditions present in the
Cityscapes validation set, we convert the images to HSL
format and scale the lightness component by a uniformly
random number and convert the image back to RGB format.
Finally, with probability .5, we flip the image horizontally.
We found augmentation to increase our final validation IoU
by 3% and decreased our train IoU by 1% when training on
1/8 scale images.

Figure 13: Loss vs Training set

Training set size Epochs

Figure 14: ToU vs Epoch

void  |flat const |object |nature |sky human |vehicle

void 69% 14% 11% 1% 3% 1% 1% 1%
flat 0%|  97%! 1% 0% 1% 0% 0% 1%
const 0% 1% 91%. 1% 5% 2% 0% 1%
object 1% 4% 45% 24% 21% 1% 1% 2%

nature 0% 1% 6% 0%  92% 0% 0% 0%

sky 0% 0% 3% 0% 4% 93% 0% 0%

human 1% 5% 30% 3% 5% 0%| 49% 7%

vehicle 0% 3% 9% 0% 3% 0% 2% 82%

Figure 19: Confusion matrix of initial results

5.5.2 FCN-4 and FCN-2

Since we found that humans and objects are the primary
source of our errors, and our model does a poor job at find-
ing precise borders for these small entities, we propose ex-
tending the FCN-8 architecture with more gradual upsam-
pling while preserving more fine grained features from early
layers. In our FCN-4 model, we add an additional upsam-
pling layer with a skip connection to pool2. In FCN-2 we
add one more upsampling layer to FCN-4 with a skip con-
nection to pooll.

Val Loss | Val IoU
FCN-8 437 58.6
FCN-4 424 59.2
FCN-2 430 59.6

Table 3: New Architectures performance improvement
over 1/8 scale images



Cityscapes Initial loU vs. Epoch

Cityscapes Initial Loss vs. Epoch
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Figure 16: Cityscape IoU vs. Epoch

(a) Well segmented image

(b) Bad segmented image

Figure 20: Example output images

5.5.3 Scaling vs Cropping

The Cityscapes images are so large that our gpus can only
process minibatches of size 1. Consequently, we were in-
terested in the effect that training on downscaled or cropped
images would have on our model’s performance. We exper-
imented downscaling images by a factor of 2, 4, and 8 us-
ing nearest neighbor interpolation. We also tried cropping
1/64th of each image randomly in each epoch. Both meth-
ods allow us to train a network in only a small fraction of
the time required to train on full size images. Table 4 shows
that cropping and scaling by 2 yields similar performance
compared to training on full size images. However, perfor-
mance degrades significantly as we scale images down fur-
ther. Additionally, we find that random cropping mitigates
our overfitting problem because every epoch we effectively
train on brand new data.

6. Final Results and Discussions

We achieved the best correction to overfitting with the
use of data augmentation by cropping images randomly as
described in 5.5.3. Compared to our initial results, the ratio
of Val Loss / Train loss was significantly reduced from 5.9
to 1.27. The final IoU performance can be seen in Fig. 18.

There is a difference of data being exposed to the model.
Where as we omit pixels when scaling an image down,
cropping actually exposes all pixels to the model during
training. In some ways, this is not a *fair’ comparison since
cropping introduces more data to the model - but this is the
point of data augmentation. We compared the results of
the cropping technique with 1/2 scale and Full Size Im-
ages (which take days to compute on AWS) in Table 4.
It is clear that performance using the Cropping Technique

Figure 17: Loss vs. Epoch
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Figure 18: Final IoU vs Epoch

achieves the same validation IoU as the training with full
sized images, though there is less headroom as the model is
now underfitting with a Train IoU of 72%. Fig. 20 show

’ \ Train Loss \ Train IoU \ Val Loss \ Val IoU

Full Size .07 719 .55 12
Scalex2 .08 18 .60 71
Scalex4 .23 .68 .39 .65
Scalex8 28 .62 44 58
Crop .26 72 33 .70

Table 4: Scaling and Cropping

examples of well segmented and poorly segmented results.
As explained with the Confusion Matrix, our model per-
forms best with flat (roads, sidewalks), and sky categories
and worst with object (poles, traffic lights) and human cat-
egories.

7. Conclusion and Future Work

We started with baselines Softmax Regression and MLE
for image segmentation. MLE performed reasonably with
the 2-class KITTI dataset with a Val IoU of .69, but only
achieves a Val IoU of .32 on the 8-class Cityscapes dataset.
We did an in depth study of FCNS8 architecture using
pre-trained VGG16 weights and found almost perfect seg-
mentation for the KITTI dataset, and overfitting on the
Cityscapes dataset with the out-of-the-box model. Regular-
ization didn’t help much in our network, perhaps because
we were only regularizing the weights in the FCN convolu-
tional layers. The layers in our pre-trained VGG16 model
are not regularized. Randomly cropping the training set im-
ages resulted in the best correction to overfitting, with a final

Val IoU of .70 and Train IoU of .72.
Going forward, we plan to correct for underfit by intro-

ducing a deeper architecture (we attempted this, but were
unfruitful). We also plan to introduce regularization to the
VGG16 model weights as regularization should be able to
reduce overfitting more than what we have seen. Finally, we
would like to run the model on real-driving video data to test
for classification performance as well as running time.



8. Contributions

Gaurav proposed the problem statement and running
FCNs over Cityscapes and KITTI datasets. He devel-
oped the first code base for FCN. He conducted hyper-
paramter tuning and performance analysis over KITTI
dataset. He also performed Cityscapes Ablative Error Anal-

ysis, Dropout and newer architecture implementation.
Jeff ran a separate code base to serve as a secondary

check and plotted loss by Epoch. He performed regulariza-
tion, different scale factor, introducing additional data, and
training set size experiments. He also performed confusion

matrix analysis.
Evan implemented early stopping and plotted loss by

training set size, and loss by epoch. He also implemented
data augmentation and random cropping.
All contributed to the writing to the report.
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