
Deep Bin Picking with Reinforcement Learning

Jeff Chen 1 Tori Fujinami 1 Ethan Li 1

Abstract
We investigate an aspect of the robot bin pick-
ing problem which has not been well explored,
namely the task of clearing a deep bin of items
piled on top of each other. This task is chal-
lenging, as lifting one item may cause others to
move into positions which are difficult to grasp,
or it may cause extraneous lifts such that other
items unintentionally fall out of the bin. We show
that Pybullet and Dex-Net can be used to cre-
ate the simulation environment for this task, and
that heuristic approximation of action spaces en-
ables computationally tractable training of a Q-
learning model with function approximation. Ex-
perimental results demonstrate that our Q network
achieves an average total reward of −2.0 with
hand-crafted state-action features, that it signifi-
cantly outperforms both random and greedy base-
lines with total rewards of −9.6 and −8.2, respec-
tively. Further, preliminary results suggest that
that more complete state-action representations
without hand-crafted features may have potential
to improve performance.

1. Introduction
Picking items from bins is a task that is primarily performed
by humans today; Amazon alone employs more than 90,000
employees in its warehouses under suboptimal working con-
ditions (Rittenhouse, 2017; Weindling, 2017). The use of
robots to automate bin picking has the potential to revo-
lutionize commerce to assist human workers directly or
automate repetitive subtasks for human efforts.

There is immense interest to use robots for bin-picking
and increase efficiency and throughput while reducing cost
and labor injuries to workers. Amazon even launched the
Amazon Robotics Challenge to encourage research in this

*Equal contribution 1Department of Computer Science, Stan-
ford University, Stanford, California, USA. Correspondence to:
Jeffrey Mahler <jmahl42@gmail.com>.

Proceedings of the 35 th International Conference on Machine
Learning, Stockholm, Sweden, PMLR 80, 2018. Copyright 2018
by the author(s).

area. (Correll et al., 2018; Ama, 2017)

Bin picking is the most critical step in bin clearing, where
the goal is to clear a pile of items by repeatedly grasping
one item at a time from a bin and placing these items into
other containers. Research in this space has focused on
decomposing the problem into two subproblems: 1) the
poses of the items are detected (perception) and 2) best
grasps are calculated for removing the items (planning).
This approach is difficult due to sensor noise and occlusion
resulting in imperfect estimates of the item poses (Mahler &
Goldberg, 2017). The task is even more challenging when
a deep bin of objects must be cleared, as items tend to be
stacked on top of one another.

2. Related Work
Recent work has investigated the use of deep neural net-
works to calculate best grasps directly from point clouds of
item piles. (Mahler & Goldberg, 2017) presents one such
approach by hand-crafting a supervisor policy π∗ given full
state information and using this supervisor for imitation
learning to train a policy which uses point cloud observa-
tions rather than item pose state information.

Formulating the supervisor policy π∗ is non-trivial. First,
picking up one item may accidentally lift up other items,
which then causes the accidentally lifted item to fall out
of the bin. Second, picking up one item may cause other
items move and make them more difficult to grasp. These
challenges were mitigated in (Mahler & Goldberg, 2017)
by simulating mostly flat item piles on a plane, with items
generally not stacked on top of each other. Additionally,
(Mahler & Goldberg, 2017) notes that their supervisor policy
only maximizes reward for the current time step, rather than
the full time horizon.

In contrast to (Mahler & Goldberg, 2017), which uses a
flat bin of items, we use a cube-shaped bin. This deeper
bin results in items being piled on top of each other such
that items from the bottom of the pile cannot be picked up
by the gripper without collision. This means that the most
stable grasps that have the highest probability of success
are not necessarily feasible actions. We therefore have to
use reinforcement learning to find an optimal policy for
choosing the order in which items should be grasped.

1



(Lillicrap et al., 2015) discusses one of our main issues. For
robotics, the action space is generally continuous, but gener-
ally learning with a Deep Q Network (DQN) only does well
with small discrete action spaces. Often, discretization of
the action space may seem like an initially feasible solution,
but issues remain with dimensionality and the coarseness
of discretization needed for good control. (Lillicrap et al.,
2015) solves this issue by instead taking the ideas underly-
ing DQN and applying them to policy gradients. Particularly,
they build an actor-critic, model-free, deterministic policy
gradient to operate over the continuous action space.

(Gu et al., 2016) extends regular Deep Q-learning to apply
to a continuous action space by outputting a value function
term and an advantage function term. They then use model-
guided exploration and rollouts with synthetic samples with
fitted dynamics to improve sample efficiency.

Although we do not take the solutions presented in either
(Lillicrap et al., 2015) or (Gu et al., 2016) directly, we adapt
DQN to our continuous state and action space by leveraging
the known set of items and all possible actions for each of
those items to create a finite action space. We prune the
action space and specially encode states and actions based
on which features we think are important for learning. This
allows us to minimize our state-action space representation
to make learning feasible.

3. Approach
With a deep bin of items, removal of one item usually causes
other contacting items to move, changing their available
grasp locations with potential delayed consequences for
how efficiently the remaining items can be removed. Fur-
thermore, removing an item may cause other items resting
on it to be pulled up and fall out of the box extraneously.
Thus, optimal planning of the sequence of grasps for re-
moving items may need to account for how grasps in the
action space become feasible or infeasible due to physi-
cal interactions resulting from the grasp sequence. Given
these challenges with delayed consequences and the dif-
ficulty of comprehensively modeling the consequences of
item removal actions, we explore reinforcement learning
approaches to train a policy to maximize reward over the
entire time horizon of the deep bin picking task.

3.1. MDP Model

We formulate the problem as an MDP (S,A, P,R, γ):

• S (States): The state is the set of identifiers and poses
of items currently in the pile. An item pose consists
of its Cartesian position (x, y, z) and its orientation
represented as quaternion (q0, q1, q2, q3).

• A (Actions): The actions for a state consist of the avail-

Figure 1. Distribution of grasp metrics across all grasps in the
database. Grasp probability is calculated linearly rescaling and
clamping the metrics so that grasps with a metric in the top 10%
succeed with a probability of 0.9.

Figure 2. Image from (Mahler et al., 2017) showing grasp locations
on an item returned from Dex-Net

able grasps g for each item i in that state, along with
their respective probabilities of grasp success pg. The
grasp locations for a single item are depicted in Figure
2. Each action corresponds to an attempt to remove an
item from the pile with a specific grasp. Each grasp is a
4-DOF gripper pose g = (p, θ, d) where p is the grasp
center location (x, y) of the vertical axis along which
the gripper travels, θ is the orientation of the gripper
about the grasp’s vertical axis, and d is the grasp depth
along the grasp’s vertical axis. The action space is
defined as a pre-computed sampled set of grasps for
every item, extracted from the Dex-Net 2.0 database.
Dex-Net also returns a grasp quality metric calculated
using the Ferrari-Canny L1 score, which we use to
approximate pg as described in 3.3. At each time step,
actions for the remaining grasps at the current state
are pruned using collision checking through Dex-Net
so that, for any given state, any actions which cause a
collision between the gripper and another item are dis-
carded. Further details on the motivation and approach
for this are described in 3.4.

2



• P (Transition Probabilities): The next state is the set
of item locations and orientations simulated to static
equilibrium after an attempted removal. Given the
current pile of items and the grasp and item specified by
the action, that item is successfully removed from the
pile with the grasp success probability pg; otherwise,
the state remains the same.

• R (Rewards): We assign a reward of +1 for success-
fully removing an item from the environment and a
penalty of −10 for every extraneous item which unin-
tentionally falls out of the crate during removal of a
different item.

Figure 3. Taking out a bottle (left) causes a hammer to fall out of
the crate (right)

• γ (Discount Factor): To encourage our policy to finish
removing items efficiently, we introduce a discount
factor of γ = 0.9.

We configure our model to terminate when no feasible,
collision-free grasps are available or when 10 consecutive
grasps have failed, indicating that the policy cannot find any
grasps likely to succeed.

3.2. Simulator

We developed a custom simulator using the Pybullet physics
simulator and Dex-Net’s collision checking functionality to
simulate environment dynamics. In our simulator, we use a
cubic crate and 96 items exported from the Dex-Net’s subset
of the 3DNet database, selected such that items fit in the
simulated crate and have valid properties for well-behaved
physics simulation.

3.2.1. STATE INITIALIZATION

To sample from initial environment states, we generate a
pile of items in the simulated crate by sequentially loading
a randomized set of unique items with uniformly-sampled
random friction coefficients, dropping them from uniformly-
sampled random positions and orientations above the crate,

Figure 4. A crate of items as the initialized state

and simulating the environment until it reaches static equi-
librium in our Pybullet simulator. Static equilibrium is deter-
mined by comparing the change in position and orientation
of each item over a short time interval to thresholds for these
displacements. The key difference between our approach
and the approach in (Mahler & Goldberg, 2017) is our use
of a crate-shaped bin, rather than a flat plane, for our pick-
ing environment. As described above, our approach makes
environment dynamics and future rewards more sensitive
to actions, as the stacking of items in the crate introduces
potential consequences for items near the item removed by
any action. Because we chose a coarse simulation time
step in order to run simulations quickly, items occasionally
get stuck intersecting the walls or floor of the crate. This
presents challenges in simulating item removal, as described
next.

3.2.2. ITEM REMOVAL

We simulate removal of an item specified by action a =
(i, g, pg) by first sampling a Bernoulli random variable with
parameter pg to determine whether the attempted grasp suc-
ceeds. If the grasp fails, we conclude the item removal
attempt. If the grasp succeeds, we pull the item up at con-
stant velocity until it reaches a threshold height. If the item
is stuck due to intersecting the walls or floor of the crate,
we delete it instead of pulling it up. We then simulate the
environment until it reaches static equilibrium.

3.3. Action Space Approximation

Because the true sets of item and grasp poses are continuous,
the true set of actions for picking up items is also continuous.
We make this space manageable by sampling a large but
finite set of actions from Dex-Net, and we avoid running
relatively slow collision checks on all actions in this set
by first pruning actions based on grasp success probability

3



and by implementing multi-pass collision checking for all
actions for each item.

3.3.1. GRASP SUCCESS PROBABILITY

We start by getting all grasps for every item in Dex-Net.
Each grasp comes with an associated grasp quality metric
calculated using the Ferrari Canny L1 score, which is pro-
portional to the amount of force and torque perturbation
required to knock an item out of the gripper jaws in grasp.
However, in simulation, this metric is only indirectly related
to the real probability of a successful grasp. For the pur-
poses of learning in simulation, we convert the metric to
a grasp probability by linearly rescaling and clamping the
metrics so that grasps with a metric in the top 10% succeed
with a probability of 0.9.

3.3.2. SAMPLING A LARGE ACTION SPACE

At each time step, we sample the resulting set of actions to
generate a candidate list Acandidates of the feasible actions,
namely actions which would not cause collisions between
the gripper and other items in the crate. The following tech-
niques were adopted out of necessity to speed up simulation
speed by an order of magnitude.

We pre-process grasps by pruning grasps with Ferrari Canny
L1 scores of less than 0.001 (which correspond to success
probabilities of less than 8%) because they are not likely to
succeed, which helps to speed up simulation.

The first pass across the action space searches for a single
collision-free action for each item. The items are first sorted
based on item height (decreasing Z positions) so that we can
guarantee that the first two actions in the list corresponding
to the top two items in the bin are returned if any grasps
exists. For the first two items, we thoroughly search all
possible grasps to ensure grasps for highest positioned items
are not missed.

After the first two items, we find actions for other items
by sampling three actions. These actions are chosen as the
1st, 11th, and 22nd grasps from the list of all grasps for
that item, sorted by decreasing pg. Gripper-item collision
checking is performed sequentially on these three grasps to
check grasp feasibility, and the first feasible grasp found (if
any) for that item is added to Acandidates, and the item is
excluded from further searching. If none of the three actions
are collision-free, the item is moved to a list of items which
are unlikely to have successful grasps. If there are enough
actions in Acandidates after the first pass through the items,
then it is returned and no further actions are checked for
feasibility.

If there are not enough actions in Acandidates after the first
pass through the items, a second search is conducted to
find up to one random feasible action for each remaining

item. For every item in the unlikely list, a grasp is randomly
chosen without replacement and checked for gripper-item
collisions. If the grasp is collision free, this item is removed
from the unlikely list, and the grasp’s corresponding action
is added to Acandidates. If not, then the item remains in
the unlikely list and a random action for the next item is
searched. The search through actions for the unlikely items
continues until Acandidates grows to the minimum number
of actions, until there are no unlikely items left, or until a
maximum of 10 iterations over the unlikely item list have
been completed.

3.4. Dex-Net Collision Checking

Dex-Net 2.0 provides functionality for collision checking
between items and grippers. This collision checking is both
faster and performs better than collision checking through
Pybullet simulation. (Mahler et al., 2017) Item meshes
and grasps with item-to-world transforms are loaded into
the Dex-Net collision checker so that each grasp can be
evaluated for feasibility. The collision checker checks for
collisions in both approach of the gripper to the item and
in the closing of the gripper jaw on the item, using rigid
body transformations of each item in the state given the item
positions and orientations.

3.5. Baseline Heuristic Policies

We evaluate various hand-crafted heuristic baseline poli-
cies π on our MDP and analyze whether and how we can
improve upon the heuristic algorithmic supervisor policy
π∗ presented in (Mahler & Goldberg, 2017) to maximize
reward over the full time horizon in our simulated deep
bin-picking environment.

Two unrealistic policies always successfully remove the
specified item, regardless of action feasibility or grasp suc-
cess probability. Thus, they act as extreme bounds on policy
performance in our task:

• πlowest: To estimate a lower bound on policy perfor-
mance, this policy always successfully removes the
lowest item in the crate. It tends to cause extraneous
items to fall out of the box as each item is removed.

• πhighest: To estimate an upper bound on policy perfor-
mance, this policy always removes the highest item in
the crate.

Three baseline policies only select actions fromAcandidates,
the approximate set of feasible collision-free actions. The
actions these policies choose will succeed with the grasp
success probabilities pg encoded in the actions:

• πrandom: This baseline is equivalent to the algorithmic
4



supervisor π∗ from (Mahler & Goldberg, 2017), which
randomly picks an action from Acandidates.

• πgreedy: This baseline chooses the action with the
highest pg from Acandidates.

• πgreedyhighest: This baseline chooses the action from
Acandidates which would remove the highest item in
the crate removable by any action from Acandidates.

3.6. Reinforcement Learning

Since the dynamics of our environment are too complex to
parameterize with an a priori model and the size of our state
space makes solution of our MDP intractable, we investi-
gate Q-learning with function approximation and experience
replay for model-free learning. Specifically, we evaluate
linear approximation and a neural network with two fully-
connected hidden layers.

Because our complete sampled action space is very large, we
implemented our function approximators and Replay Buffer
from scratch in Tensorflow, with some snippets adopted
from homework 2.

We construct state-action value function approximators q̂
which take a state and action (s, a) as the input and output a
single approximation of q(s, a), rather than taking a state as
input and outputting approximations of q(s, a) for all a in
our action space. Our action space approximation builds a
list Acandidates of at most one candidate action per item in
the crate, so evaluating maxa∈Acandidates

q̂(s, a) given s is
computationally efficient. Our replay buffer stores the cur-
rent state and action, along with the current the variable-size
Acandidates, which is represented as a fixed-size array with
a mask array corresponding to the length of Acandidates.

3.6.1. INPUT FEATURE REPRESENTATIONS

We evaluate function approximators using two different
input representations of (s, a): a simpler representation
φsimple(s, a) consisting of features hand-crafted using our
domain knowledge to evaluate whether our function approx-
imator can learn to outperform πgreedyhighest, and a more
complete representation φcomplete(s, a) to evaluate whether
our function approximators can learn the relevant features
from the complete state and action data.

In the simpler representation, φsimple(s, a) is a vector con-
sisting of:

• The item identifiers and z positions of the centers of all
items, encoded as one-hot-like vectors zi ·~ei when item
i is in the crate, and~0 otherwise, where ~ei is the one-hot
vector label for item i. These 96 vectors, corresponding
to the maximum of 10 are then concatenated.

• The grasp depth d of action a.

a

ϕ q

b

ϕ qFc 
200

Fc 
10

c

ϕ qFc 
50

Fc 
50

Fc 
50

Fc 
50

Figure 5. Function approximator architectures for (a) linear func-
tion approximation, (b) function approximation with a feedforward
neural network consisting of two fully-connected layers . Note
that φsimple has approximately 960 elements, while φcomplete has
approximately 1030 elements.

• The grasp success probability pg of action a.

• The z position of the center of the item to be removed
by the action.

In the complete representation, φcomplete(s, a) is a vector
constructed by concatenating:

• A vector created by concatenating the vectors s =
(i, x, y, z, q0, q1, q2, q3) of all items in the crate, in ar-
bitrary order. Item identifiers i are encoded as one-hot
vectors.

• An action vector, excluding the item identifier for the
item removed by the action.

3.6.2. FUNCTION APPROXIMATOR ARCHITECTURES

Each function approximator architecture takes either
φsimple or φcomplete as its input layer:

• Our linear model q̂linear consists of a one-unit linear
output layer (Fig 5a).

• Our neural network model q̂nn consists of two fully-
connected hidden layers with ReLU activations before
a one-unit linear output layer. The first hidden layer
has 200 units, while the second hidden layer has 10
units (Fig 5b).

4. Results and Evaluation
4.1. Baseline Policies

Figure 6 shows the results for all the baselines discussed
above. As expected, πlowest and πhighest provide bounds
on the rewards accumulated, while πrandom, πgreedy, and
πgreedyhighest fall somewhere in between. The average
total discounted return for πgreedy is significantly higher

5



Figure 6. Results from running baseline policies in simulation for
500 episodes, by which time the average total discounted returns
for all baselines have converged. Lowest: −13.8, Highest: 4.9,
Random: −9.6, Greedy: −8.2, Greedy Highest: −0.7

from that of πrandom, with a p-value of 0.042 for the one-
tailed Student’s t-test with independent samples and un-
equal variances. The average total discounted return for
πgreedyhighest is significantly different from those of the
other baselines, with p-values less than 10−18 for the Stu-
dent’s t-test. Thus, we conclude that our novel heuristic
πgreedyhighest policy outperforms the greedy πrandom =
π∗ algorithmic supervisor from (Mahler & Goldberg, 2017)
on the deep bin picking task.

4.2. Linear Approximation with q̂linear

We did not expect our linear approximator q̂linear to learn
or perform very well. The average reward plot for the linear
model is displayed in Figure 7. The model achieves a maxi-
mum average total reward of −4.5 after 28,000 iterations.

Figure 7. Average reward plot for the linear function approximator
using φsimple features. While the model is learning, it is only able
to achieve a maximum total reward of −4.5 after 28,000 iterations,
which took over 40 hours to train.

4.3. Neural Network Approximation with φsimple

Figure 8 shows the average reward curve for the neural net-
work function approximator q̂nn with hand-crafted feature

inputs φsimple. This model performs significantly better
than the Linear Approximator. A comparison of average
total rewards for linear and neural net models can be seen
in Table 2.

parameter value
batch size 50
buffer size 100000

target update frequency 1000
learning frequency 4
initial learning rate 0.0025
final learning rate 0.00005

initial ε 1
final ε 0.1

number of steps between ε initial and final 20000
running average size 250

Table 1. Parameters used in neural network training

Table 1 details all the hyper-parameters tuned for training
our neural networks.

Figure 8. Average reward plot for the neural network approximator
using φsimple features. The model learns well, starting from an
average reward of −9.5 and achieving −2.0 after 36,000 iterations,
which took 46 hours to train.

4.4. Neural Network Approximation with φcomplete

We additionally tried to train function approximator q̂nn on
the complete state-action input φcomplete. The results are
displayed in Figure 9. The learning curve here suggests that
the network is learning. At this point in the learning curve
for the neural network trained with φsimple, the value was
similarly sitting below −6.0, suggesting that more data is
still needed to train the network using φcomplete.

5. Discussion
We demonstrate the viability of training and evaluating deep
bin picking using the Pybullet physics simulator with pre-
computed grasp metrics from Dex-Net 2.0. Simulation
speed is paramount due to the large number of examples
required. We show that simulation speed can be improved

6



Figure 9. Average reward plot for the neural network approximator
using φcomplete features. The model is learning, starting from
a minimum average reward of −8.0 and achieving a maximum
average reward −4.5 after 20 hours of training.

Model Average Total Reward
πhighest upper bound 4.9
πgreedyhighest baseline −0.55
NN Model + φsimple −2.0

NN Model + φcomplete −4.5*
Linear Model + φsimple −4.5

πgreedy baseline −8.2
πrandom baseline −9.6
πlowest lower bound −13.8

Table 2. Performance of models against baselines. The neural net-
work model q̂nn with action input significantly outperforms greedy
and random baselines. The greedy highest baseline uses domain
knowledge and always attempts to grasp the highest item regard-
less of success probability. Highest upper bound is the theoretical
total reward upper bound. *NN model q̂nn with φcomplete has
potential to outperform NN model q̂nn with φsimple given enough
time to train, as it has not yet converged after 20 hours of training.

by approximately 10x through careful selection of simula-
tion parameters and novel heuristics for grasp sampling and
pruning in the search for collision-free grasps.

Deep bin picking is a difficult problem as demonstrated by
the performance of our random and greedy baselines achiev-
ing average total rewards of −9.6 and −8.2, respectively,
which is much closer to the lower bound policy (−13.8)
than the upper bound policy (4.9).

We demonstrate the successful deployment of Q-learning
with a function approximator taking an action input and
a corresponding single output. Our neural network hand-
crafted features φsimple(s, a) were used to achieve an aver-
age total reward of −2.0, which dramatically outperformed
both the random and greedy baselines but did not outper-
form the πgreedyhighest baseline, which includes human
intuition that picking the highest item would result in the
lowest rate of accidental removal of extraneous objects. The
linear model also trained on the task but performed worse
as expected, achieving a maximum average total reward

of −4.5. This suggests that q̂(s, a) is not entirely a linear
function of s and a. Final comparisons among all models
are shown in Table 2.

Finally, we try to improve performance with the complete
state representation φcomplete(s, a) instead of the hand-
crafted features of φsimple(s, a). This is a much more chal-
lenging task for the function approximator because now the
approximator has to infer the item to be acted upon through
the position of the action. After training for 16,000 itera-
tions, the neural network model achieves an maximum aver-
age total discounted reward of −4.5, which is comparable
to that of q̂nn with φsimple at 16,000 iterations. However,
due to the complexity of the task, we expect this model to
require more data to converge, and it may need a deeper
neural network architecture to fit the inputs.

6. Key Challenges and Future Work
One of our biggest challenges for this project was dealing
with the speed of simulations and collision checks on a large
action space. These factors resulted in simulated episodes
being too slow to produce lots of training data. With our
action space sampling and φsimple feature encoding, we
were able to increase performance speed by a factor of
ten. However, these improvements only enabled us to run
about 20,000 samples per day, which is still too slow to train
models with more parameters. In order to attain results more
comparable to deep Q learning, we would have to speed up
the simulation rate by two more orders of magnitude, which
would likely use of parallel methods to deep reinforcement
learning, such as in (Nair et al., 2015).

Translating between mathematical representations and
physics realism of grasp successes is also a challenge. Grasp
success outcomes are sampled over grasp success probabili-
ties, but these probabilities are heuristically estimated from
a grasp quality metric by ignoring contact with other items.
Thus, our grasp success probabilities are unlikely to transfer
to the real world. An alternative is to simulate other items,
and estimate all forces acting on the item, though this would
cause additional slow downs in simulation.

Finally, there is a delicate balance between feeding a model
with the entire state versus hand tuned features. While
hand tuned features may require less parameters and train
more quickly because of the reduced state space, giving
the model the entire space may lead to higher performance
at the cost of slower and more difficult training. Larger
networks with full state representation and more training
data should be attempted, as they have potential to surpass
our πgreedyhighest heuristic baseline policy.

7



7. Acknowledgements
We’d like to thank Jeff Mahler for his support in helping us
understand the Dex-Net papers and the usage of Dex-Net
2.0. Further, we’d like to thank James Harrison, Emma
Brunskill, Anchit Gupta, and Tian Tian for their guidance
on the many challenges we faced throughout this project.

References
2017 Robotics Challenge Official Rules. Amazon Robotics

LLC, 300 Riverpark Drive, North Reading, Mas-
sachusetts 01864, 2017.

Correll, N., Bekris, K. E., Berenson, D., Brock, O., Causo,
A., Hauser, K., Okada, K., Rodriguez, A., Romano, J. M.,
and Wurman, P. R. Analysis and observations from the
first amazon picking challenge. IEEE Transactions on
Automation Science and Engineering, 15(1):172–188,
Jan 2018. ISSN 1545-5955. doi: 10.1109/TASE.2016.
2600527.

Gu, Shixiang, Lillicrap, Timothy, Sutskever, Ilya, and
Levine, Sergey. Continuous deep q-learning with model-
based acceleration. In Balcan, Maria Florina and Wein-
berger, Kilian Q. (eds.), Proceedings of The 33rd Inter-
national Conference on Machine Learning, volume 48
of Proceedings of Machine Learning Research, pp.
2829–2838, New York, New York, USA, 20–22 Jun
2016. PMLR. URL http://proceedings.mlr.
press/v48/gu16.html.

Lillicrap, Timothy P., Hunt, Jonathan J., Pritzel, Alexander,
Heess, Nicolas, Erez, Tom, Tassa, Yuval, Silver, David,
and Wierstra, Daan. Continuous control with deep rein-
forcement learning. CoRR, abs/1509.02971, 2015. URL
http://arxiv.org/abs/1509.02971.

Mahler, Jeffrey and Goldberg, Ken. Learning deep poli-
cies for robot bin picking by simulating robust grasping
sequences. In Levine, Sergey, Vanhoucke, Vincent, and
Goldberg, Ken (eds.), Proceedings of the 1st Annual Con-
ference on Robot Learning, volume 78 of Proceedings of
Machine Learning Research, pp. 515–524. PMLR, 13–15
Nov 2017.

Mahler, Jeffrey, Liang, Jacky, Niyaz, Sherdil, Laskey,
Michael, Doan, Richard, Liu, Xinyu, Ojea, Juan Aparicio,
and Goldberg, Ken. Dex-net 2.0: Deep learning to plan
robust grasps with synthetic point clouds and analytic
grasp metrics. 2017.

Nair, Arun, Srinivasan, Praveen, Blackwell, Sam, Alci-
cek, Cagdas, Fearon, Rory, Maria, Alessandro De, Pan-
neershelvam, Vedavyas, Suleyman, Mustafa, Beattie,
Charles, Petersen, Stig, Legg, Shane, Mnih, Volodymyr,

Kavukcuoglu, Koray, and Silver, David. Massively par-
allel methods for deep reinforcement learning. CoRR,
abs/1507.04296, 2015. URL http://arxiv.org/
abs/1507.04296.

Rittenhouse, Lindsay. Amazon Warehouse Employ-
ees’ Message to Jeff Bezos – We Are Not Robots,
2017. URL https://www.thestreet.com/
story/14312539/1/amazon-warehouse-
employees-discuss-grueling-work.html.
[Online; accessed 1-March-2018].

Weindling, Jacob. 7 Examples of How Ama-
zon Treats Their 90,000+ Warehouse Employ-
ees Like Cattle, 2017. URL https://www.
pastemagazine.com/articles/2017/12/7-
examples-how-amazon-treats-their-
90000-warehouse.html. [Online; accessed
1-March-2018].

8

http://proceedings.mlr.press/v48/gu16.html
http://proceedings.mlr.press/v48/gu16.html
http://arxiv.org/abs/1509.02971
http://arxiv.org/abs/1507.04296
http://arxiv.org/abs/1507.04296
https://www.thestreet.com/story/14312539/1/amazon-warehouse-employees-discuss-grueling-work.html
https://www.thestreet.com/story/14312539/1/amazon-warehouse-employees-discuss-grueling-work.html
https://www.thestreet.com/story/14312539/1/amazon-warehouse-employees-discuss-grueling-work.html
https://www.pastemagazine.com/articles/2017/12/7-examples-how-amazon-treats-their-90000-warehouse.html
https://www.pastemagazine.com/articles/2017/12/7-examples-how-amazon-treats-their-90000-warehouse.html
https://www.pastemagazine.com/articles/2017/12/7-examples-how-amazon-treats-their-90000-warehouse.html
https://www.pastemagazine.com/articles/2017/12/7-examples-how-amazon-treats-their-90000-warehouse.html

