

Generating Stylized Images from Captions: Generative Styled Network Stephanie Dong, Jeff Chen, Nick Guo {sxdong11, jc1, nickguo}@stanford.edu - June 2018

Final Results and Evaluation

• Quantitatively, single category model performance improved dramatically with Inception score increasing from 2.48 to 3.63

Single Category Im- provements	Elephant Score	Laptop Score	Train Score
provements	Score	Score	Score
Integrated GAN and	3.33	4.87	3.94
Style Transfer			
5 Layer Network	3.63	-	-
VGG Architecture	3.27	-	-
6 Layer Network	3.50	-	-
Transfer Learning	2.84	-	-
Segmented and Cropped	3.55	4.4	5.12
Images			
Segmented Images	3.54	2.93	4.4
Baseline	2.48	3.75	2.2

Qualitatively, images are much better: easily recognizable vs. incomprehensible for the baseline

> "A yellow and black striped train next to sidewalk

> > "A red train is docked at the station'

Information from captions is captured by the generated images. Left: mages are without applying style. Middle. images are through our GSN. Right: results from multi-category model

• Multi-category performance also improved dramatically

Inceptior
Score
7.15
6.03
5.67
2.49
1.86

Challenges and Error Analysis

• Poorly generated results (single category model)

"A picture of an elephant standing in some bush"

"A train with a striped door waiting on a train track."

"A laptop computer has a white screen.'

Single category elephant GSN: 26% generated correct images

- Common failures: multiple elephants eg "two elephants," "elephant with a baby elephant"; pose eg "elephant walking away"; specific features "long tusks", "eating food"
- Multi category generation:
 - Model confusion: 'red' color associated with train, so a red elephant is in the shape of a trair
- Future challenges:
 - Demonstrated that objects belonging to classes can be generated quite well. Moving forwards, can the model learn to generate relations as well? (e.g. "elephant next to a train")
 - Failure rate still too high, likely due to insufficient data. Try to get more data or augmentation
 - Multi category GSN not working as well as single category.

- I. J. Goodfellow, J. Pouget-Abadie, M. Mirza, B. Xu, D. Warde-Farley, S. Ozair, A. Courville, and Y. Bengio. Generative Adversarial Networks.ArXiv e-prints, June 2014
- S. E. Reed, Z. Akata, X. Yan, L. Logeswaran, B. Schiele, and H. Lee. Generative adversarial text to image synthesis. CoRR, abs/1605.05396, 2016. T. Salimans, I. J. Goodfellow, W. Zaremba, V. Cheung, A. Radford, and X. Chen. Improved techniques for training gans. CoRR, abs/1606.03498, 2016.